The Exercises From Day 1

Monday, May 23, 2016

- 1. Let $H = R[t]/(t^p)$, $\Delta(t) = t \otimes 1 + 1 \otimes t$. Show P(H) = Rt.
- 2. Let $H = R[t]/(t^{p^n})$, $\Delta(t) = t \otimes 1 + 1 \otimes t$. Show $P(H) = Rt + Rt^p + \dots + Rt^{p^{n-1}}$.
- 3. Let $H = R[t_1, t_2, \dots, t_n]/(t_1^p, t_2^p, \dots, t_n^p), \ \Delta(t_i) = t_i \otimes 1 + 1 \otimes t_i$. Describe P(H) as an R-module.
- 4. Let $H = R\Gamma$, Γ an abelian p-group (or any finite group). Describe P(H) as an R-module.
- 5. Let R be a domain, and $H = RC_p^* = \operatorname{Hom}_R(RC_p, R), \ C_p = \langle \sigma \rangle$. Let

$$t = \sum_{i=1}^{p-1} i\epsilon_i,$$

where $\epsilon_i(\sigma^j) = \delta_{i,j}$.

Show that $H = R[t]/(t^p - t)$, and P(H) = Rt.

- 6. Prove a subset of the following:
 - 1. $P(H) \cap R = 0$.
 - $2. \ t, u \in P(H) \Rightarrow t + u \in P(H).$
 - 3. $t \in P(H), r \in R \Rightarrow rt \in P(H)$.
 - 4. P(H) is an R-submodule of H.
 - 5. If R is a PID, then P(H) is free over R.
 - 6. $t \in P(H) \Rightarrow t^p \in P(H)$.
- 7. Show that RC_p^2 and RC_{p^2} correspond to the same R[F]-module.
- 8. Show that the R[F]-module (R[F])[X] does not correspond to any Hopf algebra H.
- 9. Let $H = R[t]/(t^{p^2})$ with

$$\Delta(t) = t \otimes 1 + 1 \otimes t + \sum_{i=1}^{p-1} \frac{1}{i!(p-i)!} t^{pi} \otimes t^{p(p-i)}.$$

This is a Hopf algebra (not the exercise). Show that H is not primitively generated (yes, the exercise).

- 10. Use Dieudonné modules to describe $\operatorname{End}(RC_p^*)$
- 11. Use Dieudonné modules to describe $\operatorname{Aut}(RC_p^*)$.
- 12. Use Dieudonné modules to describe $\operatorname{End}(R(C_p \times C_p)^*)$.
- 13. Use Dieudonné modules to describe $\operatorname{Aut}(R(C_p \times C_p)^*)$.
- 14. Does $\operatorname{Ext}_{R[F]}^1(M,M)$ give all the Hopf algebra extensions? Prove that the answer is no. Hint: consider $H = R[t]/(t^{p^2})$ with

$$\Delta(t) = t \otimes 1 + 1 \otimes t + \sum_{i=1}^{p-1} \frac{1}{i!(p-i)!} t^{pi} \otimes t^{p(p-i)}.$$

This H is a Hopf algebra (still not the exercise).

15. Let H be a primitively generated R-Hopf algebra. Prove that $H \otimes_R S$ is a primitively generated S-Hopf algebra and that

$$D_{*,S}(H \otimes_R S) = D_{*,R}(H) \otimes_R S.$$

- 16. Show that $K[t]/(t^{p^n})$ has no non-trivial L forms for any L.
- 17. Let $H = \mathbb{F}_p[t_1, t_2]/(t_1^p t_2, t_2^p t_1)$. Determine, if possible, the smallest field L such that H and $(KC_{p^2})^*$ are L-forms.
- 18. Let $M = D_*(H)$ for H a K-Hopf algebra of rank p^n . Suppose F acts freely on M. Show that H and $(K\Gamma)^*$ are K^{sep} -forms for some p-group Γ .
- 19. Let $M = D_*(H)$ for H a K-Hopf algebra of rank p^n . Suppose $F^rM = 0$ for some r > 0. Show that H and $(K\Gamma)^*$ are not K^{sep} -forms for any p-group Γ .
- 20. Find all Hopf orders in $H = K[t_1, t_2]/(t_1^p, t_2^p)$.
- 21. Find all Hopf orders in $H = K[t_1, t_2]/(t_1^p, t_2^p t_2)$.
- 22. Find all Hopf orders in $H = (KC_p^2)^*$.
- 23. Determine which of the Hopf orders in $(KC_p^2)^*$ are monogenic.
- 24. Find all Hopf orders in $H = K[t_1, t_2]/(t_1^p t_2, t_2^p t_1)$.
- 25. Determine which of the Hopf orders in the previous problem are monogenic.